\(\int \frac {1}{(a+b x^2) (c+d x^2)^{3/2}} \, dx\) [717]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 79 \[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=-\frac {d x}{c (b c-a d) \sqrt {c+d x^2}}+\frac {b \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} (b c-a d)^{3/2}} \]

[Out]

b*arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))/(-a*d+b*c)^(3/2)/a^(1/2)-d*x/c/(-a*d+b*c)/(d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {390, 385, 211} \[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {b \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} (b c-a d)^{3/2}}-\frac {d x}{c \sqrt {c+d x^2} (b c-a d)} \]

[In]

Int[1/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

-((d*x)/(c*(b*c - a*d)*Sqrt[c + d*x^2])) + (b*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(Sqrt[a]*
(b*c - a*d)^(3/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && Eq
Q[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {d x}{c (b c-a d) \sqrt {c+d x^2}}+\frac {b \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b c-a d} \\ & = -\frac {d x}{c (b c-a d) \sqrt {c+d x^2}}+\frac {b \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b c-a d} \\ & = -\frac {d x}{c (b c-a d) \sqrt {c+d x^2}}+\frac {b \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} (b c-a d)^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.25 \[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {d x}{c (-b c+a d) \sqrt {c+d x^2}}-\frac {b \arctan \left (\frac {a \sqrt {d}+b x \left (\sqrt {d} x-\sqrt {c+d x^2}\right )}{\sqrt {a} \sqrt {b c-a d}}\right )}{\sqrt {a} (b c-a d)^{3/2}} \]

[In]

Integrate[1/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

(d*x)/(c*(-(b*c) + a*d)*Sqrt[c + d*x^2]) - (b*ArcTan[(a*Sqrt[d] + b*x*(Sqrt[d]*x - Sqrt[c + d*x^2]))/(Sqrt[a]*
Sqrt[b*c - a*d])])/(Sqrt[a]*(b*c - a*d)^(3/2))

Maple [A] (verified)

Time = 2.90 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.16

method result size
pseudoelliptic \(\frac {-b c \,\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right ) \sqrt {d \,x^{2}+c}+d x \sqrt {\left (a d -b c \right ) a}}{\left (a d -b c \right ) \sqrt {\left (a d -b c \right ) a}\, \sqrt {d \,x^{2}+c}\, c}\) \(92\)
default \(\frac {-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {2 d \sqrt {-a b}\, \left (2 d \left (x -\frac {\sqrt {-a b}}{b}\right )+\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}}{2 \sqrt {-a b}}-\frac {-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}-\frac {2 d \sqrt {-a b}\, \left (2 d \left (x +\frac {\sqrt {-a b}}{b}\right )-\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}}{2 \sqrt {-a b}}\) \(733\)

[In]

int(1/(b*x^2+a)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(-b*c*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2))*(d*x^2+c)^(1/2)+d*x*((a*d-b*c)*a)^(1/2))/(a*d-b*c)/((a*
d-b*c)*a)^(1/2)/(d*x^2+c)^(1/2)/c

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 201 vs. \(2 (67) = 134\).

Time = 0.34 (sec) , antiderivative size = 442, normalized size of antiderivative = 5.59 \[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\left [-\frac {4 \, {\left (a b c d - a^{2} d^{2}\right )} \sqrt {d x^{2} + c} x - {\left (b c d x^{2} + b c^{2}\right )} \sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, {\left (a b^{2} c^{4} - 2 \, a^{2} b c^{3} d + a^{3} c^{2} d^{2} + {\left (a b^{2} c^{3} d - 2 \, a^{2} b c^{2} d^{2} + a^{3} c d^{3}\right )} x^{2}\right )}}, -\frac {2 \, {\left (a b c d - a^{2} d^{2}\right )} \sqrt {d x^{2} + c} x - {\left (b c d x^{2} + b c^{2}\right )} \sqrt {a b c - a^{2} d} \arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right )}{2 \, {\left (a b^{2} c^{4} - 2 \, a^{2} b c^{3} d + a^{3} c^{2} d^{2} + {\left (a b^{2} c^{3} d - 2 \, a^{2} b c^{2} d^{2} + a^{3} c d^{3}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(4*(a*b*c*d - a^2*d^2)*sqrt(d*x^2 + c)*x - (b*c*d*x^2 + b*c^2)*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*
b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 + 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c +
 a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(a*b^2*c^4 - 2*a^2*b*c^3*d + a^3*c^2*d^2 + (a*b^2*c^3*d
 - 2*a^2*b*c^2*d^2 + a^3*c*d^3)*x^2), -1/2*(2*(a*b*c*d - a^2*d^2)*sqrt(d*x^2 + c)*x - (b*c*d*x^2 + b*c^2)*sqrt
(a*b*c - a^2*d)*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2)*
x^3 + (a*b*c^2 - a^2*c*d)*x)))/(a*b^2*c^4 - 2*a^2*b*c^3*d + a^3*c^2*d^2 + (a*b^2*c^3*d - 2*a^2*b*c^2*d^2 + a^3
*c*d^3)*x^2)]

Sympy [F]

\[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int \frac {1}{\left (a + b x^{2}\right ) \left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/(b*x**2+a)/(d*x**2+c)**(3/2),x)

[Out]

Integral(1/((a + b*x**2)*(c + d*x**2)**(3/2)), x)

Maxima [F]

\[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )} {\left (d x^{2} + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*(d*x^2 + c)^(3/2)), x)

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.35 \[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {b \sqrt {d} \arctan \left (-\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{\sqrt {a b c d - a^{2} d^{2}} {\left (b c - a d\right )}} - \frac {d x}{{\left (b c^{2} - a c d\right )} \sqrt {d x^{2} + c}} \]

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

b*sqrt(d)*arctan(-1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*d
 - a^2*d^2)*(b*c - a*d)) - d*x/((b*c^2 - a*c*d)*sqrt(d*x^2 + c))

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int \frac {1}{\left (b\,x^2+a\right )\,{\left (d\,x^2+c\right )}^{3/2}} \,d x \]

[In]

int(1/((a + b*x^2)*(c + d*x^2)^(3/2)),x)

[Out]

int(1/((a + b*x^2)*(c + d*x^2)^(3/2)), x)